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Introduction

taphylococcus haemolyticus, a coagu-
lase-negative staphylococcus (CoNS),
is a common skin commensal that can
act as an opportunistic pathogen, par-
ticularly in immunocompromised patients or those with
indwelling medical devices [1, 2]. Despite lacking co-
agulase activity, unlike Staphylococcus aureus, S. hae-
molyticus is recognized as a significant opportunistic
pathogen responsible for severe infections, including
bacteremia, endocarditis, and prosthetic joint infections
(PJIs), particularly in association with medical devices
in hospital environments [3, 4]. These infections, such as
bacteremia, are frequently exacerbated by the multidrug-
resistant (MDR) nature of S. haemolyticus, with epide-
miological surveillance indicating an MDR prevalence
ranging from 54% to 79% among hospital-acquired
isolates, particularly those recovered from neonatal in-
tensive care units (NICUs) and burn wards [5, 6]. Case
reports indicate that immunocompromised individuals,
as well as those with co-infections or underlying comor-
bidities, face a higher risk of fatality due to S. haemo-
Iyticus infection [7]. A hallmark of S. haemolyticus is
its ability to form biofilms, which is crucial for disease
persistence. The exopolysaccharides produced during
biofilm formation can also inhibit the growth and devel-
opment of biofilms in competing bacterial species [8].
Despite its increasing clinical relevance, S. haemolyti-
cus remains understudied compared to other staphylo-
cocci, particularly in terms of its molecular mechanisms
of virulence and resistance. This review addresses this
gap by synthesizing recent findings on S. haemolyticus
pathogenesis, antibiotic resistance, and novel therapeutic
approaches, providing a foundation for targeted research
and improved clinical management.

Materials and Methods

This narrative review synthesizes recent literature
on S. haemolyticus pathogenesis, multidrug resistance
(MDR), and therapeutic strategies in human clinical in-
fections. A systematic literature search was conducted
using PubMed and Google Scholar from 2020 to 2025
to capture studies reflecting advances following research
on S. aureus and Staphylococcus epidermidis. The key-
words included ‘Staphylococcus haemolyticus’ And
‘multidrug resistance’ OR ‘biofilm’ OR ‘antimicrobial
peptides (AMPs)’ OR ‘phage therapy’ OR ‘phytochemi-
cals’ OR ‘hospital-acquired infections (HAIs)’.

Inclusion criteria encompassed peer-reviewed articles
in English, focusing on human clinical infections, mo-
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lecular mechanisms, epidemiology, or novel therapies
for S. haemolyticus. Exclusion criteria included studies
primarily on other staphylococci, non-peer-reviewed
sources, or pre-2020 data unless deemed seminal. The
search yielded 1,247 articles; after removing duplicates
(n=312) and screening titles and abstracts, 156 full-text
articles were assessed, with 60 included for qualitative
synthesis. Evidence quality was evaluated based on
study design (e.g. clinical trials, cohort studies, in vitro/
in vivo models) and journal impact, prioritizing high-
quality primary research and systematic reviews. As a
narrative synthesis, this review integrates findings with-
out meta-analytic methods, acknowledging potential
biases from selective study inclusion and varying study
designs. Limitations included the scarcity of S. haemo-
Iyticus-specific clinical trials and potential underreport-
ing of community-acquired infections.

Components of S. hemolyticus Pathogenicity
Biofilm formation

Biofilm formation is a hallmark of S. haemolyticus
pathogenicity, enabling persistent infections on indwell-
ing medical devices, such as catheters and prosthetic
joints [9]. Unlike S. aureus and S. epidermidis, S. haemo-
Wyticus forms biofilms independently of the ica operon,
relying on autolysin E (AtlE) and surface proteins Bhp
and Fbe for initial attachment to vitronectin and fibrino-
gen [10, 11]. Subinhibitory concentrations of cefotaxime
have been shown, paradoxically, to enhance biofilm for-
mation in coagulase-negative staphylococci, including
S. haemolyticus, by inducing the release of extracellular
DNA (eDNA), as demonstrated in in vitro investigations
[12]. Vancomycin exhibits limited effectiveness against
biofilms and displays poor intracellular penetration [13].
Rifampicin demonstrates strong anti-biofilm activity
against S. haemolyticus by disrupting the biofilm matrix
and decreasing bacterial viability. However, the rapid
emergence of resistance mutations necessitates its use in
combination therapy with agents, such as vancomycin or
daptomycin to maintain therapeutic efficacy and prevent
resistance development [ 13]. Another study revealed that
fusaric acid derivatives, such as qy17, suppress S. hae-
molyticus biofilm formation by modulating the expres-
sion of genes associated with stress response and viru-
lence, suggesting promising therapeutic potential [14].

Important surface proteins, enzymes, and toxins
of S. haemolyticus

S. haemolyticus employs a repertoire of virulence fac-
tors to enhance its pathogenicity. Fibronectin-binding
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proteins (FnBPs) facilitate adhesion to the extracellular
matrix, enabling host cell invasion and tissue penetra-
tion [15]. These observations align with those reported
by Eltwisy et al., indicating that S. haemolyticus utilizes
biofilm formation and FnBPs to enhance adhesion and
internalization into host cells. Once internalized, the bac-
terium secretes various toxins and enzymes that contrib-
ute to tissue damage, stimulate the release of proinflam-
matory cytokines, and ultimately lead to host cell death
[16]. Additional virulence-related elements include ad-
hesion proteins, such as elastin-binding protein (Ebp),
fibrinogen-binding protein (SdrE), the immune evasion
molecule capsular polysaccharide B (CapB), and the cy-
tolytic toxin CylR2. Notably, Ebp and SdrE are involved
in mediating bacterial attachment to host cells, whereas
cytolysins, such as CyIR2, significantly contribute to the
pathogenic potential of S. haemolyticus [17]. In a study,
Wolden et al. reported 65 surface-associated proteins
in S. haemolyticus, with SceD and Atl showing nota-
bly increased expression during keratinocyte coloniza-
tion, potentially facilitating persistent infection [18]. S.
haemolyticus secretes enzymes and toxins that enhance
its pathogenicity by degrading host immune factors
and promoting inflammation [13]. Staphylococcal en-
terotoxins (SETs), encoded by genes, such as sea, seg,
and sei, function as superantigens, triggering cytokine
release and contributing to severe outcomes, including
sepsis [19, 20].

Clinical Impact

The diseases listed in Table 1 highlight the diverse clin-
ical impact of S. haemolyticus, with nosocomial infec-
tions and sepsis posing the most significant challenges
due to high rates of MDR and biofilm formation [13,
21-23]. Community-acquired infections, such as uri-

Table 1. Clinical diseases caused by S. haemolyticus
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nary tract infections (UTIs), are increasingly reported,
particularly in the elderly and catheterized patients [24].
Current guidelines recommend catheter removal and a
5-7 day course of antibiotics for catheter-related blood-
stream infections (CRBSI) caused by CoNS, but emerg-
ing evidence supports reevaluating the necessity of anti-
biotics in low-risk cases [25]. These findings underscore
the need for enhanced diagnostics and targeted therapies
to manage S. haemolyticus infections effectively.

MDR Mechanisms

S. haemolyticus is a major driver of HAIs due to its
MDR, affecting antibiotics, such as p-lactams, quino-
lones, macrolides, and aminoglycosides [28]. Resis-
tance to methicillin, mediated by mecA4 or mecC genes,
encodes a modified penicillin-binding protein (PBP2a),
rendering B-lactam antibiotics ineffective [29]. Recent
genomic research has identified new mec variants, with
the ccr complex being a crucial part of the entire SC-
Cmec cassette. This complex encodes the ccr recom-
binases (ccrA, ccrB, and ccrC), which facilitate the
integration and excision of SCCmec from the recipient
chromosome, playing a key role in its mobility [30].
Furthermore, the co-location of cfr, optrA, and vanA on
linear plasmids has been observed, leading to MDR to li-
nezolid and oxazolidinones in staphylococci [31]. These
factors highlight the significance of S. hiaemolyticus as a
reservoir for resistance [32].

Recent epidemiological data from 2023 to 2025 in-
dicate a rising prevalence of MDR S. haemolyticus in
NICUs, with clonal outbreaks of ST29/CC3 reported
in France (up to 60% of isolates in preterm infants) [5,
33]. In Asia, particularly China, genomic analyses of
burn wound isolates have revealed high resistance to

Disease Description

At-risk Populations

Clinical Outcomes and Challenges Ref.

Biofilm-mediated infections

Immunocompromised patients,

Persistent infections due to MDR;
high mortality in MDR cases, often

Nosocomial Infections on catheters, prosthetic X - X [13, 23, 26, 27]
L . ICU patients, and neonates requiring device removal and
joints, and other devices
prolonged therapy
. Bloodstream infections, Immunocompromised patients Hl.gh mortality risk in n'eonates
Sepsis . ) . ; with MDR CoNS; requires pro- [13, 26]
primarily catheter-related and indwelling device users .
longed antibiotic therapy
R t infections; limited effec-
UTls MDR infections of the UTI Elderly and catheterized patients ecurren |‘n ec an.s’ !m| ed eftec [23]
tive antibiotics
Biofilm- . . . . A .
Plls iofilm medlate.d !nfectlons T e e e Chronic |nfe.ct|0ns, .n?ay require [13]
on prosthetic joints surgical revision
X . Opportunistic infections . . .
Diabetic foot ulcer causing tissue damage and Diabetic patients Risk of osteomyelitis; potential [16]

infections delayed healing

need for amputation
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Table 2. Key resistance mechanisms, associated genes, and their clinical implications

Antibiotic Resistance Mechanism Associated Genes Clinical Implications Ref.
Methicillin Modified PBP2a rgducmg MecA and MecC Limits B—Iactém us?; reqylres 29]
B-lactam affinity vancomycin or linezolid
Gchopeptldgs (e.g. .vancomycm, Altered cell wall precurSf)rs or il 66 e A Reduce the eff{cz?cy.of last- (37, 38]
teicoplanin) regulatory gene mutations resort antibiotics
Linezolid 23S rRNA mutations gr cfr- cfr and 235 rRNA mutations Restricts optl?ns for MDR (31, 39]
mediated methylation strains
Lincosamides (e.g. clindamycin) Biilt3@; enz;;nnatlc TR Inu(A) and vga(A),. Limit the use in skin infections [13, 40]
Mupirocin Altered isoleucyl-tRNA mupA Impairs decolqnlzahon strate- (41]
synthetase gies
. . . Efflux pumps or ribosomal Reduce efficacy in biofilm
Tetracyclines (e.g. tigecycline) sieeden tet(K) and tet(L) infections [34]
Aminoglycosides (e.g. gentamicin) Enzymatic modification aac(6’)/aph(2”) Restrict catheter infection [34, 42]

treatment

B-lactams (95%) and emerging vancomycin-intermedi-
ate strains [6]. Globally, S. haemolyticus acts as a res-
ervoir for resistance genes via horizontal gene transfer
(HGT), exacerbating HAIs in immunocompromised in-
dividuals [32].

Azharollah et al. reported that clinical isolates show
high resistance to erythromycin (79.6%), cefoxitin
(71.4%), and ciprofloxacin, with 54.1% exhibiting
MDR. Community-acquired isolates exhibit a lower
prevalence of MDR (20%), but notable resistance to ti-
gecycline (40%) [34]. Treatment of MDR S. haemolyti-
cus relies on last-resort antibiotics, such as vancomycin
and linezolid; however, emerging resistance, including
vanA-mediated vancomycin resistance and cfr-driven
linezolid non-susceptibility, poses significant challenges
[35]. However, recent studies indicate that ceftobiprole
and dalbavancin show high in vitro activity against S.
haemolyticus, with 96% and 93% susceptibility, respec-
tively [36]. These discrepancies highlight the need for
standardized susceptibility testing and regional surveil-
lance to reconcile conflicting data and guide therapy.
Table 2 summarizes the key resistance mechanisms, as-
sociated genes, and their clinical implications.

Table 2 highlights the diverse resistance mechanisms
of S. haemolyticus, with mecA-mediated methicillin re-
sistance and vanA-driven glycopeptide resistance pos-
ing the GREATEST therapeutic challenges. Emerging
resistance to linezolid and mupirocin further compli-
cates decolonization and treatment strategies, emphasiz-
ing the need for novel antibiotics and infection control
measures.

Emerging Therapeutic Strategies
Infection control and prevention

Effective infection control strategies, including restrict-
ed antimicrobial usage, enhanced hygiene protocols, and
rigorous environmental cleaning, play a critical role in
limiting S. haemolyticus transmission. Additionally, an-
tibiofilm compounds can be applied to surfaces to en-
hance disinfection by eliminating preformed biofilms
[43]. Topical decolonization methods, including nasal
application of mupirocin and body washes with 4%
chlorhexidine, have demonstrated temporary effective-
ness in eliminating Staphylococcus carriage from the
skin and nares [44].

Novel therapies

Phytochemicals also show promise; for instance, plant-
derived extracts, such as Ficus carica latex and ethanol
extracts of Pimpinella anisum, disrupt S. haemolyticus
biofilms and exhibit notable antibacterial activity [45,
46]. However, phytochemical compounds, have been
shown to enhance wound healing in diabetic mice in-
fected with S. haemolyticus, exhibiting approximately
80% inhibition of bacterial growth [46].

Essential oils from Lavandula angustifolia and marine-
derived xanthones from Streptomyces caelestis exhibit
anti-biofilm and bactericidal effects against MDR .
haemolyticus [47-50]. Phage therapy disrupts S. haemo-
Iyticus biofilms using lytic phages, offering an alterna-
tive to antibiotics [51]. Recent studies have shown that
phages initially identified against Staphylococcus xylo-
sus are highly versatile and effectively target S. haemo-

Res Mol Med, 2025; 13(1):1-8.
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Iyticus and other significant pathogens of the same genus
[52]. Recent advancements in phage therapy include the
use of lytic phages that specifically target S. haemolyti-
cus biofilms. In vivo studies conducted in murine wound
models have demonstrated the efficacy of this approach,
resulting in a reduction of bacterial loads exceeding 90%
[53].

AMPs represent an emerging treatment modality for
S. haemolyticus. Although the precise mechanism of ac-
tion remains elusive, these peptides interact with vari-
ous components of the bacterial envelope, disrupting
their organization and facilitating the efflux of cellular
contents [54]. AMPs, including engineered bacteriocins,
such as romsacin, target the membranes and biofilms of
MDR S. haemolyticus [55, 56]. In addition, romsacin
shows potent activity against MDR strains, with promis-
ing in vivo data in skin infection models [57].

Gaps, Challenges, and Future Directions

Despite notable advances in elucidating the pathogenic
mechanisms of S. haemolyticus, there remain substan-
tial knowledge gaps. Clinical trials specifically address-
ing S. haemolyticus infections are limited, restricting the
establishment of evidence-based therapeutic guidelines,
particularly for MDR strains [58]. Epidemiological data
on CA-infections are also scarce, as most available stud-
ies primarily focus on HAIs, especially in NICUs and
ICUs [59]. Furthermore, the lack of systematic compara-
tive analyses between S. haemolyticus and other CoNS
with respect to virulence determinants and antimicrobial
resistance mechanisms impedes the development of spe-
cies-specific therapeutic approaches [58].

Diagnostic accuracy is further hindered by the pheno-
typic similarities among CoNS species, underscoring the
need for advanced molecular and proteomic diagnostic
methods. S. haemolyticus exhibits unique biofilm for-
mation mechanisms (e.g. ica-independent pathways via
AtIE) compared with S. epidermidis. However, system-
atic comparisons of virulence factors, resistance profiles,
and therapeutic responses across different CoNS species
are lacking. Comparative studies could elucidate why S.
haemolyticus is an underestimated opportunistic patho-
gen. Future research should focus on identifying novel
resistance determinants through integrative genomics
and transcriptomics to facilitate the design of targeted
antimicrobial strategies. Additionally, reinforcing infec-
tion control practices in healthcare settings is essential
to limit the spread of MDR S. haemolyticus. Although
the complete eradication of S. haemolyticus may not be
feasible, implementing comprehensive preventive mea-

Res Mol Med, 2025; 13(1):1-8.
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sures, such as rapid and accurate diagnostics, strength-
ened infection control protocols, strict environmental
regulations, and the development of alternative thera-
pies, such as bacteriophage treatment or AMPs, can sig-
nificantly reduce its impact.

Conclusion

S. haemolyticus poses a growing threat in human clini-
cal infections due to its MDR and robust biofilm forma-
tion, complicating the treatment of HAIs. This narrative
review underscores the urgent need for prudent antimi-
crobial use, enhanced infection control, and develop-
ment of novel therapies, like phage therapy and AMPs.
Addressing research gaps through clinical trials, global
surveillance, and omics-driven approaches will be criti-
cal in combating this underestimated pathogen.
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